In low energy versatile memory arrays having a gold nanoparticle monolayer. Nanoscale five, 1972?979 (2013). 21. Han, S.-T. et al. Microcontact Printing of Ultrahigh Density Gold Nanoparticle Monolayer for Flexible Flash Memories. Adv. Mater. 24, 3556?561 (2012). 22. Leong, W. L. et al. Non-Volatile Organic Memory Applications Enabled by In Situ Synthesis of Gold Nanoparticles in a Self-Assembled Block Copolymer. Adv. Mater. 20, 2325?331 (2008). 23. Wei, Q. et al. Additive-Driven Assembly of Block Copolymer anoparticle Hybrid Supplies for Answer Processable Floating Gate Memory. ACS Nano six, 1188?194 (2012). 24. Paydavosi, S. et al. Functionality Comparison of Diverse Organic Molecular Floating-Gate Memories. Nanotechnology, IEEE Transactions on 10, 594?99 (2011). 25. Haddon, R. C. et al. C[sub 60] thin film transistors. Appl. Phys. Lett. 67, 121?23 (1995). 26. Virkar, A. et al. The Role of OTS Density on Pentacene and C60 Nucleation, Thin Film Growth, and Transistor Functionality. Adv. Funct. Mater. 19, 1962?970 (2009). 27. Irimia-Vladu, M. et al. Vacuum-Processed Polyaniline 60 Organic Field Impact Transistors. Adv. Mater. 20, 3887?892 (2008). 28. Anthopoulos, T. D. et al. Air-Stable n-Channel Organic Transistors Primarily based on a Soluble C84 Fullerene Derivative. Adv. Mater. 18, 1679?684 (2006). 29. Brabec, C. J. et al. Polymer ullerene Bulk-Heterojunction Solar Cells. Adv. Mater. 22, 3839?856 (2010). 30. Ryu, S.-W. et al. Fullerene-Derivative-Embedded Nanogap Field-EffectTransistor and Its Nonvolatile Memory Application. Small 6, 1617?621 (2010). 31. Chen, L.-M., Hong, Z., Li, G. Yang, Y. Recent Progress in Polymer Solar Cells: Manipulation of Polymer:Fullerene Morphology and the Formation of Efficient Inverted Polymer Solar Cells. Adv. Mater. 21, 1434?449 (2009). 32. Park, B., Choi, S., Graham, S. Reichmanis, E. Memory and Photovoltaic Elements in Organic Field Effect Transistors with Donor/Acceptor Planar-Hetero Junction Interfaces. J. Phys. Chem. C 116, 9390?397 (2012). 33. Cho, B. et al. Nonvolatile Analog Memory Transistor Primarily based on Carbon Nanotubes and C60 Molecules.288617-73-2 uses Little 9, 2283?287 (2013).150529-93-4 supplier 34.PMID:33587237 Sung, C.-F. et al. Versatile Fullerene Field-Effect Transistors Fabricated Via Solution Processing. Adv. Mater. 21, 4845?849 (2009). 35. Kaltenbrunner, M. et al. Anodized Aluminum Oxide Thin Films for RoomTemperature-Processed, Versatile, Low-Voltage Organic Non-Volatile Memory Elements with Great Charge Retention. Adv. Mater. 23, 4892?896 (2011). 36. Zhou, Y., Han, S.-T., Xu, Z.-X. Roy, V. A. L. Low voltage versatile nonvolatile memory with gold nanoparticles embedded in poly(methyl methacrylate). Nanotechnology 23, 344014 (2012). 37. Han, S.-T. et al. Layer-by-Layer-Assembled Lowered Graphene Oxide/Gold Nanoparticle Hybrid Double-Floating-Gate Structure for Low-Voltage Flexible Flash Memory. Adv. Mater. 25, 872?77 (2013). 38. Myung, S., Park, J., Lee, H., Kim, K. S. Hong, S. Ambipolar Memory Devices Primarily based on Reduced Graphene Oxide and Nanoparticles. Adv. Mater. 22, 2045?049 (2010). 39. Zhou, Y. et al. Low temperature processed bilayer dielectrics for low-voltage flexible saturated load inverters. Appl. Phys. Lett. 98, 092904 (2011). 40. Zhou, Y., Han, S.-T., Xu, Z.-X. Roy, V. A. L. Polymer-nanoparticle hybrid dielectrics for versatile transistors and inverters. J. Mater. Chem. 22, 4060 (2012). 41. Masatoshi, K. Yasuhiko, A. Pentacene-based organic field-effect transistors. Journal of Physics: Condensed Matter 20, 184011 (2008). 42.